Alfonso Araque
Dept of Neuroscience,
University of Minnesota
Minneapolis, MN, USA
Alfonso Araque is Professor in the Department of Neuroscience at the University of Minnesota since 2013. He obtained his Ph.D. in 1993 in Biological Sciences at Universidad Complutense de Madrid. He did his postdoctoral research with Dr Phil Haydon at the Iowa State University, Ames, USA, from 1996 to 1999, studying astrocyte-neuron communication in cultured cells. He established his independent laboratory in 2001 at the Cajal Institute in Madrid, Spain, where he continue to study the properties and mechanisms of the reciprocal communication between neurons and astrocytes. He was Coordinator of the Biomedicine area of the National Agency for Evaluation and Prospective in Spain, Vice-President of the Spanish Society for Neuroscience. He is editorial board member of Cell Calcium, Glia and eNeuro. His major contributions include: the first demonstration of astrocyte-induced slow inward currents (SIC) mediated by calcium and SNARE-protein dependent glutamate release from astrocytes; the ability of astrocytes to discriminate between the activity of different synapses and to integrate those inputs, which indicate that astrocytes show integrative properties for synaptic information processing; the existence of new forms of neuron-astrocyte signaling mediated by endocannabinoids; the ability of astrocytes to regulate synaptic transmitter release at single hippocampal synapses; the existence of a form of long-term potentiation (LTP) of synaptic transmission induced by the temporal coincidence of astrocytic and postsynaptic signalling; the ability of endocannabinoids to potentiate synaptic transmission through stimulation of astrocytes; the involvement of astrocytes in the cholinergic-induced LTP in vivo; and the circuit- and synapse-specific astrocyte-neuron signaling in the striatum.
Giorgio Carmignoto
CNR Istituto di Neuroscienze
Padua, Italy
Dr Giorgio Carmignoto is group leader at the Institute of Neuroscience which belongs to the National Research Council (CNR), the main public research organization in Italy. He is also associated with the Department of Experimental Biomedical Science of the University of Padova. The central theme of his research is the specific signalling between neurons and astrocytes investigated by laser-scanning microscope living cell imaging and patch-clamp recording techniques. Among obtained results are the first evidence for the ability of astrocytes i) to be activated by neurotransmitter synaptic release in slice preparations ; ii) to work as principal mediators of neurovascular coupling; iii) to generate neuronal synchrony by acting on extrasynaptic NMDA receptors. His research is now focused on the role of astrocytes in epilepsy.
Elly Hol
Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht
Utrecht, Netherlands
Elly Hol was trained as a medical biologist with a specialization in molecular neurobiology. After her Ph.D. in Utrecht, she obtained a Max-Planck Fellowship to work for 2 years at the Max-Planck-Institute for Neurobiology in Martinsried, Germany. In 1997, she started as a post-doc at the Netherlands Institute for Brain Research in Amsterdam, where she acquired substantial funding, including a fellowship of the Netherlands Brain foundation. Between 2003 and 2013 she headed the group “Astrocyte Biology & Neurodegeneration” at the Netherlands Institute for Neuroscience. She currently is professor of “Biology of Glia and Neural Stem Cells” at the University of Amsterdam (2011), and associate professor in Utrecht (2013). Elly Hol is a recipient of numerous research grants, including the prestigious NWO VICI-award. She is in the editorial board of Glia, chair of the ‘Friends of the Neurofederation’, and chair of GliaNed. The research of her group is focused on the role of glial cells in brain diseases. The overall aim is to elucidate the molecular and functional changes in glia that contribute to the pathogenesis of neurological and psychiatric diseases. Her work is particularly concerned with studying glial cells in human post-mortem brain tissue and in mouse models for brain diseases. She applies sophisticated immunological, molecular and cell biological techniques on whole brain tissue and on glia isolated from human and mouse brains. Elly Hol’s work is published in leading journals such as Brain, Molecular Psychiatry, Science, and Stem Cells Translational Medicine. She is regularly invited as a speaker at dedicated research conferences and at events for a broader scientific audience. She enjoys to explain research to the general public.
Frank Kirchhoff
Dept of Molecular Physiology, Institute of Physiology University of Saarland
Homburg, Germany
Frank Kirchhoff is Chair of the Department of Molecular Physiology at the University of Saarland in Homburg, Germany. He studied biochemistry at the University of Hannover, received his PhD degree in neurobiology from the University of Heidelberg and habilitated in biochemistry at the Free University of Berlin. After postdoctoral periods at the University of Heidelberg and the Max-Delbrück-Centrum for Molecular Medicine, Berlin, he started his research group ‘Glial Physiology and Imaging’ at the Max Planck Institute of Experimental Medicine, Department of Neurogenetics in Göttingen in 2000. In 2009, he was appointed as full professor at the University of Saarland. He is Editorial Board Member of GLIA and Journal of Chemical Neuroanatomy. His research addresses the molecular and cellular mechanisms of neuron-glia interactions using transgenic mouse models and in vivo-imaging. He developed a series of transgenic mice with cell-type specific fluorescent protein or inducible cre DNA recombinase expression in various glial cells. These mice appeared as valuable tools to study the structural dynamics of glial cells and the function of glial transmitter receptors in vivo.
Giovanni Marsicano
Neurocentre Magendie
INSERM
Bordeaux, France
Dr. Giovanni Marsicano is a tenured researcher at Inserm. He leads the group “Endocannabinoids and Neuroadaptation” at the NeuroCentre Magendie, an INSERM and University of Bordeaux Research Center devoted to neuroscience. Dr. Marsicano is a Veterinary Medicine Doctor as formation. After the Veterinary diploma, he worked on research related to Embryonic Stem Cells from farm animals and to xenotransplantation models in Italy for 4 years. He then moved to the Max-Planck Institute of Psychiatry in Munich for a PhD student position, where he initiated the work on the role of type-1 cannabinoid receptors (CB1) and of the endocannabinoid system (ECS) in brain physiology, which since has been his main research interest. The subject of his PhD thesis was the generation of conditional mutants for CB1 and anatomical and functional studies on the mechanisms of action of the ECS. After PhD graduation in 2001, he made two post-doc periods in Germany and moved to Bordeaux in 2006 (recruited as senior scientist in 2007) to lead his independent research group. He is member of the SfN, the French Society of Neuroscience, the International Cannabinoid Research Society (ICRS) and of the International Society of Neurochemistry (ISN). By using conditional mutagenesis in mice and behavioral, biochemical and electrophysiological tools, his work contributed defining the role of CB1 in specific cell populations in learning and memory, food intake and energy balance, anxiety, stress-coping and others. Through a clear bottom-up scientific approach, these studies allowed exploring some general principles of brain functioning, such as the balance between excitation and inhibition, the interactions between the brain and the periphery, the importance of energy metabolism in brain functions and, more recently, the interaction glial-neurons. In 2012, by generating conditional mutant mice lacking CB1 receptors from GFAP-positive cells, he contributed to define the role of astroglial CB1 receptors in the working memory effects of cannabinoids and on their in vivo electrophysiological correlates. Since then, the role of astroglial CB1 receptors became one of the most important lines of research in his group.
Eric Newman
Department of Neuroscience,
University of Minnesota
Minneapolis, MN, USA
Eric A. Newman, a Distinguished McKnight University Professor of Neuroscience at the University of Minnesota, is an internationally recognized leader in the field of glial cell biology. He received his Bachelor’s and PhD degrees from the Massachusetts Institute of Technology, did postdoctoral work at the Schepens Eye Research Institute, and was appointed to the faculty of the University of Minnesota in 1990. Dr. Newman’s research focuses on glial cell functions and the regulation of blood flow in the central nervous system in health and disease. He has characterized signaling pathways mediating neurovascular coupling in the retina and has studied changes in neurovascular coupling associated with diabetic retinopathy and retinal ischemia. His findings have broad implications for brain function, suggesting that glial cells play an essential role in many key brain processes.
João Filipe Oliveira
Institute of Health and Life Sciences Research
University of Minho
Braga, Portugal
João Filipe Oliveira is a Principal Investigator at the ICVS/3B’s Associate Laboratory, of the University of Minho in Portugal. He received his PhD in neuropharmacology from the Leipzig University, Germany. There, he used electrophysiology and immunohistochemistry techniques to study glutamatergic and purinergic neurotransmission involving astrocytes, under the supervision of Prof. Peter Illes. He obtained a Marie Curie Fellowship to return to Portugal, where he carried out his postdoctoral works on the study of the impact of neuron-glia interactions on complex cognitive functions under the mentorship of Prof. Nuno Sousa. He merged the know-how on behavior testing and neuroanatomical techniques with his electrophysiology expertise to carry out his independent project on the physiological involvement of astrocytes in the computation of cognitive function, as well as in the context of psychiatric disorders in which cognitive function is affected. In the lab, he studies animal models with altered astrocytic function by means of complementary behavior, electrophysiological, histological and molecular techniques to understand involvement of astrocyte-neuron signaling in brain network processing, ultimately modulating behavior.
Gian Michele Ratto
NEST - Scuola Normale Superiore
Pisa, Italy
Gian Michele Ratto graduated in Physics at the University of Genoa and received his post doctoral training in Berkeley (with Roger Tsien) and in Cambridge (with Peter McNaughton). After a lectureship at the University of California in Davis he became tenured scientist at the Institute of Neuroscience in Pisa. He moved to the Physics laboratory of Scuola Normale in 2008 where he heads the in vivo imaging laboratory. The lab is interested in the cellular mechanisms at the basis of synaptic plasticity in physiological and pathological conditions using two photon imaging, electrophysiology and targeted delivery of genetically encoded sensors as principal tools of the trade.
Richard Robitaille
Dép. de Physiologie Université de Montréal
Montréal, QC, Canada
Richard Robitaille is a Professor in the Département de physiologie at Université de Montréal, Montréal, Canada. He is the coordinator for the graduate program in neurosciences in the Department of neurosciences. He received his Ph.D. in 1989 in Neurobiology at Université Laval with Dr Jacques P. Tremblay. He did his post-doctoral training with Dr Milton P. Charlton in the Department of Physiology at the University of Toronto from 1989 to 1993. He then started his independent research activities in 1993 at Université de Montréal where he stayed since. He received number of national and international awards at all stages of his career. He is an associate editor for the journal Glia. His research focuses on the role of glial cells in the regulation of synaptic functions in normal as well as in pathological conditions. He uses mammalian neuromuscular junctions and acute brain slices as experimental models. He addresses the role of glial cells in the regulation of basal synaptic transmission and the regulation of synaptic plasticity. He also studies the contribution of glial cells in the outcome of synaptic competition, during aging and in ALS.
Dmitri Rusakov
UCL Institute of Neurology
University College London
London, United Kingdom
Dmitri Rusakov is a Professor of Neuroscience (since 2007) and Wellcome Trust Principal Fellow (since 2013) at UCL Institute of Neurology. Graduated with a Masters in Physics in 1984 he obtained his PhD in Neurobiology and Biophysics at Bogomeltz Institute of Physiology in Kiev in 1988. He received an independent research academic award in 1990 at the same Institute but moved to the UK in 1993 to continue his postdoctoral studies with Mike Stewart at the Open University, and from 1998 with Alan Fine and Tim Bliss at the National Institute for Medical Research, London. His independent academic career in the UK started in 1999 with an MRC Career Development Award, which he moved to UCL in 2000 to continue his collaboration with Dimitri Kullmann. His main scientific interests focus on basic mechanisms of formation and transfer of neural signals in the brain, inside and outside the synaptic cleft. Increasingly, this involves rapid molecular communication with astroglia. His laboratory combines modern methods of patch-clamp electrophysiology in organised brain tissue with novel optical imaging approaches and extensive biophysical modelling.
Sebastien Thuault
Senior Editor
Nature Neuroscience
New York, NY, USA
Sebastien Thuault is Senior Editor at the journal Nature Neuroscience. After his undergraduate degree in Paris, Sebastien obtained his PhD from the University of Bristol in the UK, where he trained as an electrophysiologist, studying hippocampal plasticity, epilepsy and GPCR signaling under the supervision of Graham Collingridge. He joined Nature Neuroscience in 2011 after a post-doctoral position at Columbia University where he studied the role of HCN channels in neuronal processing and memory in the mouse in the laboratories of Steve Siegelbaum and Eric Kandel. At Nature Neuroscience, he is responsible for selecting the content of the journal, and various other aspects of the publishing process, including organizing peer-review, promoting research articles, writing highlights and editorials and commissioning reviews. His research interests range from single-cell computation to the structural and functional organization of neuronal circuits and their role in system function and behavior.
Marie-Ève Tremblay
Département de médecine moléculaire
Université Laval
Quebec, QC, Canada
Marie-Ève Tremblay is an assistant professor at Université Laval in Québec since March 2013. During her training, she developed expertise in non-invasive imaging to study the physiological roles of glial cells throughout the lifespan. Using these techniques, her postdoctoral work revealed that microglia, the resident immune cells of the brain, actively remodel neuronal circuits (by phagocytosis of pre-synaptic axon terminals and post-synaptic dendritic spines) during normal physiological conditions. As an independent investigator, she is now exploring the significance of this new cellular mechanism which could represent the missing link between neuroinflammation and cognitive dysfunction in the pathogenesis of diseases. In particular, her research focusses on elucidating the roles of microglia in the loss of synapses which best correlates with the impairment of learning and memory across chronic stress, aging, and various pathological conditions. In complement, she is investigating the involvement of bone marrow-derived myeloid cells which infiltrate the brain through the vasculature, to provide further insights into the relationship between the brain and body across homeostasis, plasticity and disease. She is also studying additional physiological roles of microglia and other myeloid cell types in the brain, as well as their dysregulation upon chronic stress, depression, schizophrenia, aging, and neurodegenerative diseases to identify new pathogenic mechanisms. This work is conducted using a longitudinal approach that combines non-invasive chronic two-photon in vivo imaging –structural and functional– with superesolution microscopy, correlative 3D-scanning electron microscopy, and behavioural assessments. Her long-term goal is to help develop new therapies using myeloid cells as vectors for effecting targeted changes in neuronal circuits, in order to spare memories, learning and other cognitive functions.